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A mathematical model proposed by Bark and Alavyoon for modelling laminar natural convection in
electrochemical cells, with binary electrolytes, is extended to simulation of two-dimensional turbulent
¯ows. The turbulence was modelled by a standard k±�model. The constants used in the model are the
same as those used by Henkes and Hoogendoorn. Steady state calculations were carried out in a
square, di�erentially heated enclosure for Gr � 7� 1010 and Pr � 0:71. The turbulence model used
could not predict the transition e�ect on the Nusselt number along the hot wall. Transient calcu-
lations performed in an enclosure with an aspect ratio of 35, for Gr � 6:4� 1011 and Sc � 2763,
revealed large scale ¯uctuations in the boundary layers near the vertical walls. The model was able to
predict qualitatively the velocity ®eld for transitional ¯ow for air induced by buoyancy at Grh � 8100
and Grh � 22 500. The correlation between the Sherwood and Rayleigh numbers was studied by
modelling the mass transfer at the electrodes using a Butler±Volmer law. The computed Sherwood
number was found to be approximately proportional to the Rayleigh number to the power of 0.2 in
the range of Rah between 5� 108 and 1010, and with an order of magnitude of 105.
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List of symbols

c concentration (molmÿ3)
C a reference value for the metallic

ionic species

min hi0
F D1
� sinh F

RT �V� ÿ Vÿ�
� �

; c0
h i

(molmÿ3)
Cf dimensionless wall-shear stress

de®ned by H�@v=@x�w=
���������������
gbDTH
p

C1;C2 coe�cients in � equation
Cl coe�cient in mT equation
D salt di�usivity de®ned by D1D2�z1ÿz2�

D1z1ÿD2z2
(m2 sÿ1)

E electrode potential (V)
F Faraday constant (96 485Cmolÿ1)
g acceleration due to gravity

(9.81m sÿ2)
Gr Grashof number Ra=Sc
Grh Grashof number Rah=Sc
H half-height of the cell (m)
h half-width of the cell (m)
i0 exchange current density (Amÿ2)
jL limiting current density due to

mass transport (Amÿ2)
~i current density vector
k turbulent kinetic energy (m2 sÿ2)

km rate constant for mass transport
jL

z1F C0
(m sÿ1)

jj~N ijj mass ¯ux of species i (molmÿ2 s)
Nu Nusselt number de®ned by

ÿ�H=DT � �@T=@x�w
~n normal direction to the wall
p pressure (Nmÿ2)
P coe�cient appearing in equation for

electric potential z1�D1ÿD2�
D1z1ÿD2z2

R gas constant (8.31 Jmolÿ1 Kÿ1)
Ra Rayleigh number q0Cg�2H�3�a1 � a2�=

2lD
Rah Rayleigh number q0Cgh3�a1 � a2�=

2lD
Si;j mean rate of strain 1

2 �@Ui
@xj
� @Uj

@xi
� (sÿ1)

Sh Sherwood number hkm=D
T absolute temperature (K)
DT characteristic temperature di�erence

Th ÿ Tc (K)
Tc temperature of cold wall (K)
Th temperature of hot wall (K)
ux � u1 � u horizontal velocity (m sÿ1)
uy � u2 � v vertical velocity (m sÿ1)
V� electric potential of the anode, minus

the equilibrium electric potential of the
cell (V)
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1. Introduction

Electrochemical cells appear in several industrial ap-
plications, such as copper re®ning cells and lead±acid
batteries. It turns out that between the di�erent
transport mechanisms, convection, migration and
di�usion, convection controls in most applications.
The fact that the liquid moves due to buoyancy in-
¯uences the process considerably. The e�ciency of
the transport mechanisms in turn directly in¯uences
the process of interest in the cell. Therefore, during
the past few years, hydrodynamics of electrochemical
cells have been subject to many scienti®c and indus-
trial investigations.

Eklund et al. [1] studied the ¯ow in a copper re-
®ning cell both numerically and experimentally. The
concentration ®eld was measured by holographic la-
ser interferometry and the velocity pro®les using la-
ser±Doppler velocimetry. The theoretical model was
based on hydrodynamic conservation laws. Elec-
trodes kinetics were modelled with a constant con-
centration ¯ux for copper ions at the electrodes. Very
good agreement between theoretical predictions and
experimental measurements was found.

In a theoretical investigation, Bark and Alavyoon
[2] considered free convection in an electrochemical
system with nonlinear reaction kinetics and a binary
electrolyte. Unsteady electrolysis was investigated for
large values of Rayleigh and Schmidt numbers. The
change transfer at the electrodes was mathematically
quanti®ed by a Butler±Volmer law. Using perturba-
tion theory, the authors derived a simpli®ed model
for the evolution of the system. They found good
agreement with results form numerical solutions of
the full problem.

Computation of turbulent ¯ow set up by inhomo-
geneities in the density ®eld, in a closed cavity, is not
free from di�culties. The case of ¯ow in a di�eren-
tially heated square cavity has recently been used as a
test for turbulence models and numerical procedures.
Henkes and Hoogendoorn [3] reported results of
computation of turbulent natural convection in en-
closures. The comparison, between di�erent models
and solution schemes, aimed at diminishing numerical
inaccuracies and at obtaining a numerical reference
solution for the di�erentially heated squared enclo-
sures. To investigate numerical accuracy, a well-de-
®ned con®guration was prescribed, and the standard
k±� model was used as the reference model. Although
results close to experimental data were presented,
distinct inconsistencies were observed. Computation-
al di�culties such as slow convergence were noted.

In the present work, attention has been paid to
¯ows where turbulent transport has to be taken into
account. The commercially available code, CFX
F3D, is used for a more detailed investigation of the
case studied by Ziegler and Evans [4]. Their work is
extended by more accurate simulations and models.
Also, a more sophisticated, nonlinear Butler±Volmer
law as the boundary condition at the electrodes, is
used for the description of the electrodes kinetics.
Detailed comparisons are made between predicted
results and the literature, for two ¯ow cases.

2. Problem formulation

Two electrodes made from same metal are immersed
in a dilute solution of a salt of the electrode metal
providing a binary electrolyte in a rectangular cell.
The two-dimensional cell, which is assumed to have

Vÿ electric potential of the cathode, minus
the equilibrium electric potential of the
cell (V)

z charge number of species
(nondimensional)

z1 � ÿz2 � 2 number of electrons involved in
electrode reaction

Greek symbols
a1; a2 volume expansion factors for the

metallic and the nonmetallic species
respectively

b volume expansion factor �a1 � a2�=2
(m3 molÿ1)

dij Kronecker delta
� rate of turbulent kinetic energy

dissipation
g overpotential E ÿ Eeq �V�
l dynamic viscosity of solution

(kg mÿ1 sÿ1)
m kinematic viscosity l=q

(m2 sÿ1)
q ¯uid density (kg mÿ3)
/ electric potential (V)

r� turbulent Prandtl number for � set to
1.2174

rk turbulent Prandtl number for k � 1.
rT turbulent Prandtl number for

temperature 0.9

Subscripts
~g instantaneous value of �� � ��
g The average value of �� � �� on time
g0 � ~gÿ g The ¯uctuation with time of �� � ��
�� � ��A a value referred to the anode
�� � ��C a value referred to the cathode
�� � ��1 a value referred to the metallic ionic

species
�� � ��2 a value referred to the non metallic

ionic species
�� � ��eff sum of the laminar and the turbulent

�� � ��
�� � ��M value �� � �� in the metallic phase
�� � ��max maximal value of �� � ��
�� � ��0 reference value of �� � ��
�� � ��S value �� � �� in the liquid phase
�� � ��wall value of �� � �� at the wall
�� � ��1 value of �� � �� far away from the wall
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its sides parallel to the direction of gravity, is shown
in Fig. 1. The dissolution of metallic ions generally
increases the density of the ¯uid near the anode. Near
the cathode, the reverse reaction takes place resulting
in a lower density. Inhomogeneities in the density
®eld set the ¯uid in motion with a convection pattern
downwards near the anode and upwards near the
cathode. Convection contributes to transport of ions
and thereby in¯uences the chemistry of the cell.

The mathematical model considered by Bark and
Alavyoon [2] is reviewed and extended to investigate
the case of turbulent ¯ows. The standard turbulence
k±� model is used. The present study performed also
numerical predictions for the case of Ziegler et al. [4]
with the low-Reynolds number model. The results are
not shown here. As reported by Jones and Launder
[5], the low-Reynolds version was found to produce a
numerically unstable solution for natural convection
in a two-dimensional channel. The hydrodynamic
problem must be solved for six dependent variables in
a two-dimensional con®guration: the concentration
®elds, c1 and c2, where the subscript 1 denoted the
anion, and subscript 2, the corresponding cation, the
velocity ®eld~u � �u; v; 0�, the pressure ®eld p and the
electric potential /. Apart from the double layers, the
electrolyte can be assumed to be electrically neutral,
that is z1c1 � z2c2 � 0, where z denotes the charge
number of the species and the indices 1 and 2, the
metallic and the nonmetallic ionic species respec-
tively. If the double layer is not to be explicitly ac-
counted for, the mathematical problem can be
formulated using a single variable for the concen-
tration ®elds by de®ning c � z1c1 � ÿz2c2, which
satis®es the neutrality condition. The governing
equations for the above ®ve independent variables
assume however, for simulation of turbulent ¯ows,
additional terms and equations to take into account
the e�ects of random temporal and spatial ¯uctua-

tions. Introducing f as time-average value of any
variable, and f 0 its ¯uctuating part, and introducing
the turbulent kinetic energy k � 1

2 u02i (m2 sÿ2), and a
rate of turbulent kinetic energy dissipation � (m2 sÿ3),
the following system of equations is obtained for
z1 � ÿz2 � 2

@~u
@t
� Rah~u � r~u � Sc ÿrp �r2~uÿ c~ey

ÿ �
� 1

D
r � mT r~u� �r~u�T

� �� �
�1�

r �~u � 0 �2�
@c
@t
� Rah~u � rc � r2c� 1

rTD
r � �mTrc� �3�

Cr � �1� c�r/�r2c � 0 �4�

q
@k
@t
� qr � �k~u� ÿ r � l� lT

rk

� �
rk

� �
� P � Gÿ q�

�5�

q
@�

@t
� qr � ��~u� ÿ r � l� lT

r�

� �
r�

� �
� C1

�

k
P ÿ C2q

�2

k
�6�

where

lT � Clq
k2

�

leff � l� lT

P � leffr~u � ~u� �~u�T
� �

G � ÿleff

q � rT
~g � rq

Rah; Sc; D and C are de®ned as

Rah � q0Cgh3�a1 � a2�
2lD

; Sc � l
q0D

�7�

D � 2D1D2

D1 � D2
; C � 2�D1 � D2�

D1 ÿ D2
�8�

C is de®ned as min � hi0
F D1
� sinh F

RT �V� ÿ V���; c0�
�

[2],

or min � hi
2F D1

; c0� when @C=@n is set constant at the
electrodes [4]. The above system is set for the non-
dimensional variables~x �; ~v �; t �; /�;~i � and c�, where
� superscripts are dropped. The nondimensional
variables can be de®ned as

~x �~x�h; ~v � q0Cgh2�a1 � a2�
2l

~v�; t � h2

D
t� �9�

/� V� � Vÿ
2

� RT
F

/�; ~i � i0~i �; c� � cÿ c0
C

�10�

A series of numerical calculations, calculated for the
turbulent case of Ziegler et al. [4], proved that G does
not in¯uence the prediction of the mean velocity, and
can be neglected in the transport equation for k.

Ozoe [6] performed a sensitivity analysis for the
constants of the k±� turbulent model and determined
di�erent values for C1 and rT rather than those listed
below. However, since the applicability of these val-
ues for di�erent geometric and boundary conditions

Fig. 1. Geometry of cell and chosen coordinate system.
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is not known, they were not employed here. The
turbulent constants are therefore chosen as Henkes
[3], except for C� in the buoyant term of the � equati
on, which was shown to have no signi®cant in¯uence
on the solutions: C1 � 1:44; C2 � 1:92; C� � 0;
Cl � 0:09; rT � 0:9; rk � 1 and r� � 1:3:

A turbulent contribution should also be taken into
account for the calculation of the electrical potential.
Here, it is assumed that the turbulent contribution is
negligible.

Bark and Alavyoon [1] used a semiempirical But-
ler±Volmer law and formulated the following non-
dimensional boundary conditions at the anode and
cathode

@c
@x
�

hi0
2F D1C

e�vÿ/� ÿ �1� c�e�/ÿv�� �
at x � ÿ1; jyj �H �anode�

ÿ hi0
2F D1C

�1� c�e�/�v� ÿ eÿ�/�v�
� �

at x � �1; jyj �H �cathode�

8>>>><>>>>: �11�

where V � F
2RT �V� ÿ Vÿ�, and H � H=h. Here the

formula was not modi®ed to account for turbulent
¯uctuations. Ziegler and Evans [4], used a simpler
condition

@c
@x
� constant �12�

For the electrical potential, because ~N2 �~ex �~0 at
x � �1,

�1� c� @/
@x
� 1

2

@c
@x

at x � �1; jyj �H

(anode, cathode) �13�
No transfer of mass occurs at the horizontal walls,
resulting in vanishing normal derivatives of the con-
centration and potential ®elds

@c
@y
� @/
@y
� 0 at y � �H; jxj � 1 �14�

For the velocity ®eld, no slip conditions are applied
on all four walls, that is

~u �~0 at x � �1 and y � �H �15�

3. Methodology

The set of equations is solved numerically using the
commercial code CFX F3D [7]. The solution meth-
odology is based on the ®nite volume discretization of
the transport equations and the continuity equation
for all incompressible ¯uid. The numerical scheme is
based on the pressure correction method. The pres-
sure-correction equation is obtained by applying the
SIMPLE algorithm [8] to the momentum equations.
The Rhie and Chow [9] interpolation scheme is used
to prevent chequerboard oscillations of pressure on
the colocated grid. In the present computations, full
®eld Stone's method was used to solve the velocity
variables, concentration and the preconditioned
conjugate gradients for pressure. The advection term

was discretized using an upwind method for steady
computation. During simulation of unsteady ¯ow, in
addition to the ®ner mesh, CCCT [10], which is a
more stable formulation of the QUICK scheme, was
used. The use of CCCT decreases numerical di�usions
and makes a study of small ¯uctuations possible.

4. Results

In this Section, results from numerical investigations
of the two-dimensional ¯ow in an electrochemical cell
are presented. The Rayleigh and Grashof number are
based on the half-width of the cell. The same pa-
rameters used by Ziegler and Evans [4], are ®rst
chosen so that the results can be compared with their
theoretical and experimental investigations. The ¯ow
is then studied in more detail.

The ¯ow is assumed to take place in a cell with a
width of 2.4 cm and a height of 85 cm. The Rayleigh
number is 5� 109 and the Schmidt number 2763. The
vertical walls of the cell form the anode and cathode,
where mass ¯ux is set constant. The horizontal walls
are electrically isolated. A detailed set of the param-
eters involved in the simulation is given in Table 1.

The simulation was started with a mesh similar to
that used by Ziegler and Evans, 32� 22 mesh points
in the vertical and horizontal directions, respectively.
As in that work, the equations were solved assuming
a steady state and the standard form of the k±� tur-
bulence model. Figure 2 shows the mean vertical ve-
locity at the mid-height of the cell. The predicted
velocity pro®le agrees qualitatively well with the ex-
perimental data.

The same calculation was repeated with a ®ner
mesh using 200� 50 mesh points in the vertical and
horizontal directions, respectively. In order to study
the possible oscillations, after the initial transients are
dampened out, the ¯ow was ®rst simulated under
assumption of steady-state. Thereafter, the simula-
tion was continued as time dependent ¯ow. Figure 3
shows a comparison between the predicted vertical
velocity pro®le, as a function of time, and the mea-
surements of Ziegler and Evans. The agreement with
experimental data, compared to that of Fig. 2, is
clearly improved. The thickness of the boundary
layer on the wall is nicely predicted.

Table 1. Physical parameters of ¯ow studied by Ziegler and Evans

[4]

Quantity Value

Ionic metal Cadmium, Cd++

Average salt di�usivity 5:76� 10ÿ10 m2 s)1

Average viscosity 1:91� 10ÿ3 kg (m s))1

Average density 1200 kg m)3

Relative variation in density

with solute fraction

1.97

Reference concentration 0.0937 (mass fraction)

Anode-cathode spacing 0.024 m

Cell height 0.85 m

Current density 100 A m)2
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Figure 4 shows the present simulation of the
maximum velocity inside the boundary layer at the
mid-height of the cell as a function of time. After
about 20 s, regular ¯uctuations with a period of about
35 s, is observed. The magnitude of the ¯uctuations is
less than 10% of the mean value.

The maximum mean velocity at the mid-height of
the cell is ÿ6:75� 10ÿ4 m sÿ1. By comparing this
vertical velocity, with the period of ¯uctuations and
the width of the cell, ¯uctuations in the velocity ®eld
can be attributed to advection of wave-like eddies
whose size is of the same order of magnitude as the
width of the cell. Figure 5 shows that a wavy struc-
ture can be found in the boundary layer, with a
wavelength comparable to the width of the cell. The
waves travel at a speed close to that of the maximum
velocity in the wall-layer.

For the same geometry, with two heated vertical
walls, a Prandtl number of 7 and Rayleigh numbers
based on the half-width of the cell around
7:234� 105, Elder [11] observed a similar wavy
boundary layer structure and similar trend in the
wavelength. Elder stated that the wall waves ap-
peared when the ¯ow was close to transition to tur-
bulence and could be seen as instabilities in the
boundary layer. The wave train lost its regularity as
the turbulent state was approached.

At higher current densities, the ¯ow becomes,
loosely speaking, more like conventional turbulence,

where small scale turbulent ¯uctuations become
dominant, in comparison with large structures of
sizes comparable to the width of the cell. Figure 6
shows the increase in mean velocity with current
density. The calculations were run using a coarse
grid, which, as previously shown, predicted the ¯ows
qualitatively well.

It was found empirically on the basis of the com-
putational e�ort of the present study, that the maxi-
mal mean velocity is approximately given by the
relation

vmax � k� i0:51 �16�
where vmax and i are given in m sÿ1 and Amÿ2, re-
spectively, and k � 1:23� 10ÿ4 m2:02 sÿ1 Aÿ0:51. This
relation is in relative agreement with the one found
out by Ziegler and Evans, who found
k � 2:33� 10ÿ4 m2:02 sÿ1 Aÿ0:51. In accordance with
Ziegler and Evans, a constant current density was
imposed at electrodes. An alternative way, of mod-
elling the charge transfer at the electrodes, is use a
Butler± Volmer law. It allows a study of the in¯uence
of current density distribution on ¯ow. However, as
discussed by Bark and Alavyoon [2], the use of it, due
to numerical complexities, limits the computations to

Fig. 2. Vertical mean velocity at midheight of the cell. Result from
present computation (solid line) is composed with theoretical (da-
shed line) and experimental data (dots) obtained by Ziegler and
Evans. Rah � 5� 109; Sc � 2763.

Fig. 3. Vertical mean velocity at midheight of the cell, at di�erent
moments of time, for the ®rst 20 s, at each 5 s. Dots represent the
experimental data by Ziegler and Evans. Rah � 5� 109; Sc � 2763.

Fig. 4. Maximal vertical mean velocity in boundary layer near
anode, in an horizontal cross section of the cell at its midheight, as
a function of time. Rah � 5� 109; Sc � 2763.

Fig. 5. Isolines of vertical velocity. Horizontal dimension is ex-
panded by a factor 10. Distances equal to the width of the cell are
marked at two di�erent vertical positions. Rah � 5� 109;
Sc � 2763.
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very low cell potential drops. Figure 7 shows the
current density distribution along the cathode for two
di�erent exchange current densities. The computed
current densities are normalized by dividing by their
maximum value, which, according to Fig. 7, was
found, as expected, at the bottom of the cell. The
exchange current density was varied by a factor of 10,
between the two cases, resulting in a maximal com-
puted current density of about three times larger for
the highest value. The current density varied linearly
in the vertical direction apart from the close neigh-
bourhood to the vertical boundaries. The imposed
potential di�erence between anode and cathode was
0.014V in the above simulation.

The Sherwood number is the nondimensional mass
¯ux at the electrodes, and is de®ned as H

CwallÿC1
@C
@n

� �
wall

[12]. Here attention is paid to the qualitative depen-
dence of the Sherwood number on the Rayleigh
number, and therefore, the details in the scaling
procedure are of minor importance. Figure 8 shows
the computed Sherwood number. This number is
calculated at the cathode, at the midheight of the cell
which, due to the almost linear variation of the cur-
rent density, equals the mean Sherwood number. The
numerical predicted Sherwood number is found to be
related to the Rayleigh number according to
Sh � Ra0:2h . The Rayleigh number, in the above for-

mula, is based on the width of the cell. The reader is
referred to Elder [11] for details on the choice of the
relevant scales.

Henkes and Hoogerdoorn [3] observed that the
wall functions, used in the standard k±� model
formulation, have been established for forced con-
vection. This means that they are not adapted for
natural convection and thus he proposed to impose
a ®xed and large value for � at the ®rst mesh
points. An imposed value for �, corresponds to a
nondimensional distance y�wall � Cl=�0:41 m k2�� from
the wall to the ®rst mesh point. Henkes showed
(see Appendix A) that setting a high value of �
gave good results and that the computed variables
were found to be independent of the value, as soon
as it is large enough. In other words, the results are
not very sensitive to the nondimensional distance
between the ®rst mesh point and the wall. Unfor-
tunately, this is not the case for ¯ows where the
¯ux is given for the walls, for example in electro-
chemical systems. Figure 9 shows the sensitivity of
the ¯ow, to the imposed value y�wall at the ®rst mesh
points. Fortunately, as shown above, the traditional
wall functions predict results in good agreement
with the experimental data.

5. Conclusions

The study of the turbulent case considered by Ziegler
and Evans [4] revealed the presence of large scale
turbulent ¯uctuations, estimated close to the width of

Fig. 6. In¯uence of the current density (I) on the velocity ®eld for
constant values of current density on the electrodes. Sc � 2763.
(I=Amÿ2; Rah): (Ð) 100, 5� 109; (� � � � �) 200, 1� 1010; (-�-�-�) 300,
1:5� 1010; (- - - -) 400, 2� 1010.

Fig. 7. Predicted current density distribution using the Butler±
Volmer law at two di�erent exchange current densities. Current
density is normalized by the maximal predicted value. Solid line
corresponds to the lower value of the exchange current density,
1Amÿ2 and dashed line to the case 10 times higher.

Fig. 8. Variation of Sherwood number for di�erent Rayleigh
numbers. Diamonds show the predicted Sherwood numbers,
while the solid line presents empirical correlation curve,
Sh � Ra0:2h .

Fig. 9. Vmax against y�. Rah � 5� 109; Sc � 2763.
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the cell, and indicating local sites of weak turbulence
near the transitional state. The standard k±� model
was used for the prediction of a transitional ¯ow in-
duced by natural convection, and good agreement
was also obtained with previous direct simulations
[13]. Results are shown in Appendix B. The nonlinear
kinetics were simulated using a formula derived from
a Butler-Volmer law. The predicted Sherwood num-
ber was found to be approximately proportional to
the Rayleigh number to the power 0.2.

6. Appendices: Validation of the code

6.1. Appendix A: Turbulent free convection
in a closed cavity

Turbulent free convection in a closed cavity has been
a test case for turbulence models and numerical
methods, see [3]. The ¯ow to be computed takes place
in a square cavity and can be assumed to be two-
dimensional. The cavity contains air, resulting in a
Prandtl number of 0.7. The ¯ow is driven by a tem-
perature di�erence between vertical walls, while the
horizontal walls are assumed to be isolated. The
Rayleigh number, based on the temperature di�er-
ence and the width, or height, of the cavity, is set to
Ra � 5� 1010. The turbulence model used here is the
standard k±� model without any modi®cations. As
recommended by Henkes and Hoogerdoorn [3], the
value of � in the ®rst cell near the vertical wall was set
to a large value. The simulations was run using
90� 90 mesh points, with a higher concentration of
grid points near the wall, than in the centre of the
cavity.

In Figs 10 and 11, the nondimensional vertical
velocity and the turbulent kinetic energy, along a
horizontal cross section at the midheight of the cell,
are presented. In those Figures, results from the
present study are compared with those from numer-
ical simulations reported by Henkes et al. and ex-
perimental data. The temperature variation, on a
vertical cross section in the midplane of the cell, is
presented in Fig. 12.

Figure 13 shows a comparison between the
computed nondimensional heat ¯ux, the Nusselt
number, along the hot wall from the present simu-
lation. It also shows the same prediction by Henkes
et al. and experimental data. Figure 14 presents a
similar comparison, for the nondimensional shear
stress along the hot wall. Fluxes at the wall are
quantities, related to gradient of the ®eld variables,
and therefore less accuracy can be expected in their
prediction. Similar deviations from experimental

Fig. 10. Mean nondimensional vertical velocity pro®le at the
midheight of the cell. Key: (Ð) Henkes et al.; (-�-�-�) present study;
(�) Cheesewright et al. (1986) [14] (experimental).

Fig. 11. Mean turbulent kinetic energy near the wall, on a cross
section at y � 0. Ra � 5� 1010; Pr � 0:71. Key: (Ð) Henkes et al.;
(-�-�-�) present study; (�) Cheesewright et al. (1986) [14] (experi-
mental).

Fig. 12. Nondimensional temperature pro®le in the medium verti-
cal cross section of the cell. Ra � 5� 1010; Pr � 0:71. Key: (Ð)
Henkes et al.; (-�-�-�) present study; (�) Cheesewright and Ziai
(1986) [15] (experimental).

Fig. 13. Nondimensional wall heat transfer along the hot wall.
Ra � 5� 1010; Pr � 0:71. Key: (Ð) present study; (-�-�-�) Henkes
et al.; (�) King (1989) [16] (experimental).
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data have been observed in earlier numerical pre-
dictions, see [3].

The boundary conditions for the � equation has
been discussed in di�erent contributions. The nu-
merical solution found by Henkes et al. for the Nu-
sselt at the hot wall, as shown in Fig. 13, reveals a
local and abrupt decay of the Nusselt on the lower
part of the wall. This decay is identi®ed [3] as the
transition point of the boundary layer to the turbu-
lent regime. Such a transition point has not been
observed here with the conventional k±� model.

6.2. Appendix B: Turbulent unstrati®ed natural
convection in a vertical slot for Pr � 0:71

The computed ¯ow takes place in an in®nite vertical
canal, so that it is imposed periodic boundary con-
ditions in the vertical direction. A ®xed di�erence of
normalized temperature is set to 1 between the two
vertical walls. The Grashof number is set consecu-
tively to 8100 and 22 500, see Figs 15 and 16. The
Prandtl number is 0.71. Calculations performed by

the present study were two-dimensional and used the
k±� model in its standard version. The result are
compared with the direct simulations performed by
Phillips [13].

As Phillips reported, ``at a Prandtl number of 0.7,
the critical Grashof number is 8041''. Figure 15 is
then typically a case of transitional ¯ow. The k±�
model is nevertheless able to predict the velocity
pro®le qualitatively well. For higher Grashof num-
ber, the prediction performed with the k±� model is
still valid as the turbulent site is approached, see
Fig. 16.
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Fig. 14. Nondimensional wall shear stress along the hot wall.
Ra � 5� 1010; Pr � 0:71. Key: (Ð) present study; (-�-�-�) Henkes
et al.; (�) King (1989) [16] (experimental).

Fig. 15. Nondimensional velocity pro®le in an horizontal cross
section of the cell. Grh � 8100; Pr � 0:71. Key: (Ð) present study;
(-�-�-�) Phillips [13].

Fig. 16. Nondimensional velocity pro®le in an horizontal cross
section of the cell. Grh � 22 500; Pr � 0:71. Key: (Ð) present study;
(-�-�-�) Phillips [13].
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